Genetics and Homology

According to the evolutionary theory, homologous features are programmed by similar genes. Gene sequence similarity would indicate common ancestry since such similarities are unlikely to originate independently through random mutations. If the bones of the human arm evolved from the same precursors as the wing of a bat and the hoof of a horse as evolution teaches, then we should be able to trace these alleged homologies to the DNA that codes for them. Some geneticists thought this knowledge would allow them to find the chemical formula needed to produce an arm, leg, or other structure. But once biologists acquired a greater understanding of genetics, they found that what are labeled as homologous structures in different species often are produced by quite different genes.

Homology predicted that features produced by similar genetic sequences are phylogenetically homologous. There are now so many exceptions to this prediction that the concept of genetic homology cannot now be said to be a rule, but the exception. The classic example is mutations in certain homeotic genes41 which can cause wholesale changes in morphology such as producing two pairs of wings instead of the normal single pair, or replacing a fly’ antenna with a leg (or can even cause eyes to develop on the fly’ leg). Genes that produce results similar to the homeotic genes for flies’ wings have been found in most other animal kinds, including mammals and humans.

In another example, the gene that controls mouse eye colour also happens to control the mouse’ physical size; but the gene that controls the fruit fly’ eye colour controls not the fruit fly’ size, but female sex organ morphology.43 Although mice and flies share a similar gene (called eyeless) which functions to control their eye development, the fly’ multifaceted eye is profoundly different from a mouse’ mammal eye. In both the fly Antennapedia and mouse eyeless, similar homeotic genes control development of structures which are not homologous by either the post-Darwinian phylogenetic or the classical morphological definition.

The finding that similar genes regulate such radically different structures strongly argues against the concept of homology. So many genes used in higher organisms have multiple effects that Ernst Mayr once suggested that genes which control only a single characteristic are rare or nonexistent. The finding that a consistent one-gene/one-characteristic correspondence does not exist has been a major set back to the Darwinian interpretation of homology. Because evolutionary biologists have failed to provide a biological basis for their homology research findings, Roth concluded ‘that the title of de Beer’ 1971 essay|--|Homology, an unsolved problem|--|remains an accurate description … . The relationships between processes at genetic, developmental, gross phenotypic and evolutionary levels remain a black box’.45 Research at the molecular level has failed to demonstrate the expected correspondence between gene product changes and the organismal changes predicted by evolution. Evolution by DNA mutations ‘is largely uncoupled from morphological evolution’.46 An example of this is the large morphological dissimilarity that exists between humans and chimpanzees despite a high similarity in their DNA. In short we now know:

“ … in general the homology of structures such as organs or modules cannot be ascribed to inheritance of homologous genes or sets of genes. Consequently, organ homology cannot be reduced to gene homology. Van Valen recognizes this too and therefore suggests, as an alternative, to reduce homology to a continuity of [developmental] information. Information is not the same as genotypic nucleic acid. But what it is exactly, and how it is continuous, is still an unsolved problem.”

Evolutionary Naturalism or an Intelligent Designer?